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AdministrativeAdministrative
Midterm will be given Thursday 10/29 in class

Study Guide posted on D2L
Thursday: Discussion of questions for review
Tuesday: Midterm review assignment and discussion

Thursday's Class:
We will spend the �rst ~1/3 of class checking in with you (re: mental health
and strategies that are working)
We will spend the last ~2/3 brainstorming detailed questions and tasks for
the review on Tuesday



Sec 003 MidtermSec 003 Midterm

Classi�cation ProblemClassi�cation Problem
In this midterm you will be asked to:

Read in a data set and describe different properties of it (counts, means, etc.)
Investigate the data for less relevant features and drop them
Visualize feature spaces and discuss the plots
Build a classi�cation model using the train/test paradigm
Evaluate and discuss the �t of model using testing data

Nearly everything we have done so far is important for your success on the midterm. But
we are focused on classi�cation and modeling with the train/test split on the midterm.

Assignments to de�nitely study: Day-09, Day-10, Day 11, and Day 11.5



From Pre-Class AssignmentFrom Pre-Class Assignment

Useful bitsUseful bits
Most folks got the code working
Videos were helpful in understanding the conceptual aspects of PCA

Challenging bitsChallenging bits
Some really great questions:

Why do we need to use a PCA?
When do we use a PCA?
What is the PCA doing with the iris data set?



Principal Component Analysis (PCA)Principal Component Analysis (PCA)



Why do we need PCA?Why do we need PCA?
There are lots of reasons, but two major ones are below.

Consider a data set with many, many features. It might be computationally intensive
to perform analysis on such a large data set, so instead we use PCA to extra the
major contributions to the modeled output and analyze the components instead.
Bene�t: less computationally intensive; quicker work
Consider a data set with a basis that has signifcant overlap between features. That is,
it's hard to tell what's important and what isn't. PCA can produce a better basis with
similar (sometimes the same) information for modeling. Bene�t: more meaningful
features; more accurate models



Let's dive into the iris data set to see thisLet's dive into the iris data set to see this
In [14]: ##imports 

import numpy as np 
import scipy.linalg 
import sklearn.decomposition as dec 
import sklearn.datasets as ds 
import matplotlib.pyplot as plt 
import pandas as pd 

iris = ds.load_iris() 
data = pd.DataFrame(iris.data, columns=['sepal_length', 'sepal_width', 'petal_leng
th', 'petal_width']) 
target = pd.DataFrame(iris.target, columns=['species']) 



Let's look at the dataLet's look at the data
In [15]: plt.figure(figsize=(8,5)); 

plt.scatter(data['sepal_length'],data['sepal_width'], c=target['species'], s=30, c
map=plt.cm.rainbow); 
plt.xlabel('feature 0'); plt.ylabel('feature 1') 
plt.axis([4, 8, 2, 4.5]) 

Out[15]: (4.0, 8.0, 2.0, 4.5)



Let's make a KNN classi�erLet's make a KNN classi�er
In [21]: from sklearn.model_selection import train_test_split 

from sklearn.neighbors import KNeighborsClassifier 
from sklearn.metrics import confusion_matrix, roc_curve, roc_auc_score 

train_features, test_features, train_labels, test_labels = train_test_split(data, 
                                                                           target
['species'], 
                                                                           train_
size = 0.75, 
                                                                           random
_state=3) 
neigh = KNeighborsClassifier(n_neighbors=3) 
neigh.fit(train_features, train_labels) 

y_predict = neigh.predict(test_features) 
print(confusion_matrix(test_labels, y_predict)) 
print(neigh.score(test_features, test_labels)) 

[[15  0  0] 
 [ 0 10  2] 
 [ 0  0 11]] 
0.9473684210526315 



What happens if we use fewer features?What happens if we use fewer features?
In [22]: train_features, test_features, train_labels, test_labels = train_test_split(data.d

rop(columns=['petal_length','petal_width']), 
                                                                           target
['species'], 
                                                                           train_
size = 0.75, 
                                                                           random
_state=3) 
neigh = KNeighborsClassifier(n_neighbors=3) 
neigh.fit(train_features, train_labels) 

y_predict = neigh.predict(test_features) 
print(confusion_matrix(test_labels, y_predict)) 
print(neigh.score(test_features, test_labels)) 

[[14  1  0] 
 [ 0  7  5] 
 [ 0  7  4]] 
0.6578947368421053 



Let's do a PCA to �nd the principal componentsLet's do a PCA to �nd the principal components
In [23]: pca = dec.PCA() 

pca_data = pca.fit_transform(data) 
print(pca.explained_variance_) 

pca_data = pd.DataFrame(pca_data, columns=['PC1', 'PC2', 'PC3', 'PC4']) 
plt.figure(figsize=(8,3)); 
plt.scatter(pca_data['PC1'], pca_data['PC2'], c=target['species'], s=30, cmap=plt.
cm.rainbow); 
plt.xlabel('PC1'); plt.ylabel('PC2') 
plt.axis([-4, 4, -1.5, 1.5]) 

Out[23]:

[4.22824171 0.24267075 0.0782095  0.02383509] 

(-4.0, 4.0, -1.5, 1.5)



Let's train a KNN modelLet's train a KNN model
In [24]: train_features, test_features, train_labels, test_labels = train_test_split(pca_da

ta, 
                                                                           target
['species'], 
                                                                           train_
size = 0.75, 
                                                                           random
_state=3) 
neigh = KNeighborsClassifier(n_neighbors=3) 
neigh.fit(train_features, train_labels) 

y_predict = neigh.predict(test_features) 
print(confusion_matrix(test_labels, y_predict)) 
print(neigh.score(test_features, test_labels)) 

[[15  0  0] 
 [ 0 10  2] 
 [ 0  0 11]] 
0.9473684210526315 



Let's use only the �rst two principal componentsLet's use only the �rst two principal components
In [25]: train_features, test_features, train_labels, test_labels = train_test_split(pca_da

ta.drop(columns=['PC3','PC4']), 
                                                                           target
['species'], 
                                                                           train_
size = 0.75, 
                                                                           random
_state=3) 
neigh = KNeighborsClassifier(n_neighbors=3) 
neigh.fit(train_features, train_labels) 

y_predict = neigh.predict(test_features) 
print(confusion_matrix(test_labels, y_predict)) 
print(neigh.score(test_features, test_labels)) 

[[15  0  0] 
 [ 0 10  2] 
 [ 0  0 11]] 
0.9473684210526315 



Questions, Comments, Concerns?Questions, Comments, Concerns?


